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We characterize the self-organized criticality of a class of one-dimensional sandpile models (limited lo-
cal models) in terms of the scaling properties of troughs whose spatial distribution controls the size of
avalanches. We establish, both by a mean-field approximation and simulations, that the trough density
P is exponentially small in the depth k and that the algebraic decay of the local, overall trough density
is governed by the diffusion singularity in the continuum limit studied by Carlson et al. [Phys. Rev. Lett.
65, 2547 (1990)]. Multiscaling is seen to arise from the correlations neglected in the approximation.

PACS number(s): 05.40.+j, 05.60.+w, 64.60.Ht, 02.50.—r

Bak, Tang, and Wiesenfeld [1] proposed a few years
ago a far-reaching concept termed self-organized critical-
ity (SOC) as the underlying mechanism that generates
both spatial and temporal scale invariance in dissipative
dynamical systems in nature. One of its appealing
features is that no tuning is necessary to reach scale in-
variant states.

Because of their ease of implementation, cellular-
automata sandpile models are usually used to advocate
SOC. One particular model that has caught much recent
attention [2—9] is the so-called “local limited” (L?) mod-
el introduced by Kadanoff et al. [2]. This model is espe-
cially simple in one dimension and is defined by a thresh-
old dynamics of the slope variable z (x), x =1,. . .,L, and
the boundary conditions. During each time step, the ad-
dition of a grain at a randomly chosen column x updates
z(x) by +1, and z(x —1) by —1. If z(x)>z, (the
threshold), the column becomes unstable and N grains
slide down to the right onto column x +1. Subsequent
local instabilities may be triggered, until the pile settles
into a globally stable configuration. Then another grain
is added to initiate the next time step. We will confine
our attention to the simplest case, z,=2=N. As is com-
mon in nonequilibrium systems, the boundary conditions
are important: only in the case of open boundaries (e.g.,
closed at x =0 and open at x =L +1, hereafter called
OBC) will the system evolve on its own into an SOC state
by regulating the flow at the open end. By contrast, z is
conserved under periodic boundaries (PBC’s) and there-
fore must be tuned to attain criticality [3].

Carlson et al. [3] observed that grains sliding down the
slope in the L2 model are trapped at z(x)=<z,—N =0.
They called those sites troughs. The essence of the
trough terminology is that all physical events occurring
on the pile can be classified according to whether troughs
are created, lifted, shifted, or coalesced. The SOC state is
characterized by avalanches that cover a wide range of
spatial extent. Its distribution can be expressed in terms
of that of troughs [4,6]. For this reason, the scaling prop-
erties and correlations of troughs, which are the subject
of this article, are important characteristics of the associ-
ated SOC state.
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For convenience, we label each site either as mar-
ginal (z=2), stable (z=1), or a trough of depth

=—z€{0,1,...,kp,}, where k_,, =L —x —1 at site
x in the L? model with OBC [7]. Let p be the fraction of
stable sites among z >0 ones, and p;, =L " (3,8, —x )
the mean density of trough of depth k. The total mean
density of troughs is p=;px, and the density of stable
sites is p,=(1—p)p [that of marginal sites is
P =1—p)1—p)].

For a grain dropped on x, label the affected pair by
{z(x —1)z(x)}. The event that triggers avalanches is de-
scribed by the change [3]

{z(x.),{22},z(xq),2z(xp)}
—{z(x)+2,{11},z(x7)—2,z(xg ) +2} coalescence ,

where x; and xy are the positions of the first trough to
the left and right of x, and the mass (M =x —x; ) that
has slid down extends from the tail at x;=x; +xz —x to
the front at xg. Similarly,

{{12},z(xg —1),z(xg)}
—{{21},z(xg —1)—2,z(xg )+2} slide I;
{{ZLZ},Z(XR —1),Z(xR)}

S {fz,+1,1},z(xg —1)—2,z(xg)+2} slide II .

All other events are local, two-site processes, such as
{20} —{11}.

It is the nonlocal, multisite processes (coalescence and
slides) that dominate the dynamics of sandpile models in
general, and are responsible for their nontrivial scaling
behavior. These processes involve joint probabilities
such as the five-point probability for the coalescence,
Ps(z;,{22},zp,2z5;X; ,%,Xg ), which is the probability of
finding the pair {22} at x, its closest troughs z; and
zg at x; (<x) and xg (>x), and a nontrough z, at
xp=x;+xg—x, and P,({12},z(xg—1),z(xg);x,xg)
for slide I. Apparently, these probabilities carry much
more information than is needed, and are not easy to
determine. In the equations of motion for the mean den-
sities, we only need
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and likewise for P,. The factor L 'Y, comes from ran-
dom seeding. Moreover, it is easy to see that the
avalanche distribution
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and that the cluster-size (intertrough distance) distribu-
tion
Psx 3 3

2z, (S0)Zy (<0)

PZ(ZL,ZR;XL,xR =xL +S) .

Unfortunately, even these simpler probabilities are non-
trivial and are not available analytically [9,6]. The
difficulty arises from the correlations among all the sites
between the two end points.

It is possible to write the equations of motion for p,,,
ps, and p; in terms of P,’s. For instance, denoting
pm(t+1)—p, (t) by dp,, /dt, we find

P(M) 2 Pz(ZL,Z;xL,x=xL+M) N
z; (<0)
dpn, _ _ B
L—dt = 3 P,({12},2,zg)+P,({12},1,0)—2 ¥ ¥ Ps(z;,{22},1,zx)

zp (0)

2y (#0) zg (+0)

— 3 Ps(z,{22},1,00—3 3 3 Pi(z;,{22},2,z3)—2 3 Ps(z,,{22},2,0)

2z (#0) 2y (#0) zg (+0)

z; (#0)

— 3 Ps(0,{22},1,z)—2 3 Ps(0,{22},2,z)—P4(0,{22},2,0)

2g (#0) 2g (#0)
— 3 3 P{z2},1,zzx)—2 3 3 P,({z2},2,z3)— 3 P,({22},2,0)+(two-site terms). 2)
2(20) zg (0) 2(<0) 25 (0) 2(<0)

Its derivation is straightforward. Consider the slide-I
event as an example: by definition of z;, z(xg —1)=1 or
2. The process {{12},1,zz}—{{21},—1,zx+2} in-
creases the number of marginal sites by 1 if z =0, and
the process {{12},2,zx}—{{21},0,z5x +2} decreases
that number by 1 if zzg < —1. This accounts for the first
two terms. Likewise, coalescence contributes to the I_’s
pieces, and slide IT contributes to the last three P, terms.
The equations for other densities can be derived in the
same manner. The complexity of multisite correlations
does not allow more explicit rendering.

We now turn to a mean-field-type approximation. The
motivation is that scaling behavior is dominated by
large-scale events, since the mean intertrough distance
goes up in L very rapidly (~L'/?) [3,8]. That means,
e.g., in a typical coalescence event, x —x; and xgp —x
diverge with L. Since the joint probabilities factorize into
products in the limit of infinite distances, we invoke a
decoupling scheme as a first approximation; e.g.,

Ps(z;,{22},z7,25 )~ Py(z; )P2(2)P(z7)P (2R ) , 3)

where P,’s are singlet probabilities expressible in terms
of p and p,’s. Thus, for instance, the first term in
Eq. (2) factorizes into —(1—p)’p(1—p)(1—p)(1—py/p).
Whether the scaling properties of the model are robust
enough to hold up to such an approximation will be
determined by numerical tests.

Under this scheme, it is tedious but straightforward to
derive the equations for the mean densities by taking all
processes into account. Defining g, =p, /p, we find

dps —_n2_ 2__ _ 2__

o P S5p+2+(p*—3p+2)g,—(p*—5p+2)p
+(2—plpo—(2p%—5p +3)p,—(1—p)pp,
+(1—p)pp; , 4)

d

L0 —0p2—2p+ 14 (p?—3p+2)(a,—40)
—(3p2—3p+1)p+(2p2—5p +1)p,
+(2—p)p,—(2p2—5p +3)p,+(p2—p)p?
—(1=p)ppe—(1—p)pp;+(1—p)pp, , (5)

d

L~d—,zl—=(p—p2)+(p2—3p+2)(q3—q1)+(p2—p)p
+(2p%—=5p+1)p,+ppy+(2—p)p,
—(2p2—5p+3)p3+(1—p)ppo
—(1=p)*pp,—(1=plpp,+(1—p)pps , (6)

dpx

L—‘Z—:(PZ_:*P"*'Z)(%H_%)+PPk71

+(2p>=5p +1)p +(2—plpy 44
—(2p*—5p +3)py 12+ (1—plppy -

—(1=pVppr —(1—=plppi +1+(1—pPppi 42
fork=2. (7
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Notice that the derivation makes no explicit reference
to the boundary conditions, as is common in mean-field
approximations. The SOC steady state, characterized by
the variables p and p, (k =0), can be obtained by setting
all right-hand sides equal to zero. For large, finite L and
near the critical point, the system has a small parameter
p << 1.  This motivates us to pursue a power-series solu-
tion in p:

P=23a,p", qo=23b,p", q,=c,p",
n n n
qzzzdnpn,. “e .
n

It is known that the height variable, A (x)=3L_ z(x’),
obeys y +1=h(L —y)=<2(y +1) under OBC [7], which
yields 1—y <z(L —y)=<2. Although the relative weight
of these local states is unknown, the rarity of deep
troughs is clear from these bounds—maximum depth
[z(L —y)=1—y] occurs, provided hA(L —y’)=2(y'+1)
for all y' <y. Precisely how rare is what we now deter-
mine. Using (7), we get

L 3>  dp/dt
J=kk+2,k+4,...

=—(p>—3p +2)q; +ppix_,+0(p,) for k=2,

hence p; _; ~gq; >>p,; follows. Plugging the power series
into (4)—(7), one finds order by order that

p=L+1lp+0(p?), (8)
qo=3—3p+0(p", )
91 =3—5p 0", (10)
g=1 [g] P71+ 0(p*) for k>2 . (11)

Obviously the series can be improved systematically. The
finite-size effect implied by (8) has been noted by Krug
[4]. The first terms of g, and g, have an important impli-
cation: while it is true that the trough density becomes
extinct in the thermodynamic limit [3], the ratios con-
verge to finite values. Therefore, the SOC state remains
well defined by the scaling behavior of the distribution of
event sizes. These predictions agree well with simula-
tions (see Fig. 1), although b, ¢, and the amplitudes ex-
pectedly deviate from the measured ones. The exponen-
tial drop of trough densities in depth is verified up to
k =3, while data for deeper ones are too noisy to be use-
ful.

a,=% can also be obtained by parity relations—
apparently our approximation respects such a symmetry.
Let o(x)=(—1)*"*) be the parity variable. The fraction
of sites being even and odd is

1

f+=—2T<2[1+0(x)]>=(1~p)(1—p)+p0+p2+ e
1 ) (12)

f_=i<2[1—a(x)]>=(l—p)p +p,+pst+ -

Random seeding implies (o(x))=0 [4,8], so

f+=f_=1 for any L in steady state (they relax in time

RAPID COMMUNICATIONS

R2333

0.73 -
0.721 "=

' a
0711 “ay @)
0.7 'S
o691 L A
068 = 64 S
0.671 + 128 *
0.661 = 256 S
0.65] © 512 -
0.64] =2048 = 8192 e

063 =4096 & OBC S,

0 0056 01 015 02 025
p

%%

q0

0.04
0.035] (b) -

0.031 Lo
0.0251 -

& 0.024 A

0.015- e

0.01 At .
0.0051 @4

0 005 01 015 02 025

FIG. 1. Fractional trough densities. Lines are fits to PBC
data for (a) go~0.726—0.42p, and (b) g, ~0.136p. Also shown
is the convergence of OBC (L =64 to 4096) to the same critical
point as L—o. Not shown due to lack of space are

~1+0.20p and g, ~0.274+0.28p.

as e 2/L). Using the series expansions and (12), we

readily deduce that

ay=3, a;=by—1=L1—c, c;=a,—a,=—(b,+d,).
(13)
Hence the average slope is
E*—“%?z(x)
=2(1—p)X1—p)+(1—p)p — kpy
k(z1)
=z,—2p—2d,p*+0(p%), (14)

which is confirmed nicely to this order by simulations
(see Fig. 2). Under PBC, this prescribes the way the
trough density has to vanish [3] as we tune the conserved
average slope Z 7z, = 3.

For OBC, we find numerically that (8)—(14) also apply
to the corresponding local quantities. This is conceivable
by virtue of scale invariance manifested by the algebraic
approach of the coarse-grained slope z(x) to z, via
x 71/=1 where ¢(=4) characterizes the singularity of
the diffusivity [3]. Scale invariance suggests that the
composition of the troughs in a small local region is the
same as that of the means. Thus, e.g., one might expect
po(x)=gop(x) and p,(x) < p(x)*. This is indeed numeri-
cally the case. From the generalization of (14) to local
z(x) and p(x), we infer that p(x)=~ Ax ~ /¢~ which
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FIG. 2. Confirmation of Eq. (14) for PBC. Same symbols
as Fig. 1. Inset plots (z,—Z—2p)/2p vs p, with slope
=0.14=p,/p*~d,.

provides a direct way to determine ¢ (see Fig. 3). Numer-
ically, we find that A is independent of L, thus consistent
with g~ L ~1/3 [3,8] upon integration over x.

The decoupled approximation presented above is rem-
iniscent of the free (“noninteracting”) theory in the field-
theoretic formulation of critical phenomena [10]. It is in-
teresting to see if an analogous perturbation theory can
be developed. To see which direction it would lead us,
note that multiscaling is absent under decoupled approxi-
mation; e.g., in the cluster size distribution, we find
(s")<{s)"~p~". Undoubtedly multiscaling results
from the neglected fluctuations. To decide what correla-
tion is important, we seek the causes of the O (1) devia-
tions in the estimates of g, and ¢,. We find that [11]
the right sides of Ldp,/dt and Ldp,, /dt are both

KWAN-TAI LEUNG 48

0.01

0.001 i

FIG. 3. Algebraic decays of p(x), po(x), pi(x), and
pa(x)/p(x) from top to bottom, for OBC, L =512. The slope
-% is related to the singularity in diffusion equations (see text).

~const+O(p), but Ldp/dt=—Ld(p;+p,,)/dt <O(p?).
The origin of the differences can be traced to z;: it ap-
pears in the former pairs, but not in dp/dt. Hence the
nontrough z; is strongly (long-range) correlated with the
other relevant sites in the events, incurring O (1) errors
when replaced by singlet probabilities.

In conclusion, despite the crudeness of our approxima-
tion, it captures correctly certain scaling properties of the
model, and may serve as a starting point for a more so-
phisticated theory for the correlations.
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